Dynamic Metabolite Profiling in an Archaeon Connects Transcriptional Regulation to Metabolic Consequences

نویسندگان

  • Horia Todor
  • Jessica Gooding
  • Olga R. Ilkayeva
  • Amy K. Schmid
  • Ivan Berg
چکیده

Previous work demonstrated that the TrmB transcription factor is responsible for regulating the expression of many enzyme-coding genes in the hypersaline-adapted archaeon Halobacterium salinarum via a direct interaction with a cis-regulatory sequence in their promoters. This interaction is abolished in the presence of glucose. Although much is known about the effects of TrmB at the transcriptional level, it remains unclear whether and to what extent changes in mRNA levels directly affect metabolite levels. In order to address this question, here we performed a high-resolution metabolite profiling time course during a change in nutrients using a combination of targeted and untargeted methods in wild-type and ΔtrmB strain backgrounds. We found that TrmB-mediated transcriptional changes resulted in widespread and significant changes to metabolite levels across the metabolic network. Additionally, the pattern of growth complementation using various purines suggests that the mis-regulation of gluconeogenesis in the ΔtrmB mutant strain in the absence of glucose results in low phosphoribosylpyrophosphate (PRPP) levels. We confirmed these low PRPP levels using a quantitative mass spectrometric technique and found that they are associated with a metabolic block in de novo purine synthesis, which is partially responsible for the growth defect of the ΔtrmB mutant strain in the absence of glucose. In conclusion, we show how transcriptional regulation of metabolism affects metabolite levels and ultimately, phenotypes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global metabolic changes following loss of a feedback loop reveal dynamic steady states of the yeast metabolome.

Metabolic enzymes control cellular metabolite concentrations dynamically in response to changing environmental and intracellular conditions. Such real-time feedback regulation suggests the global metabolome may sample distinct dynamic steady states, forming "basins of stability" in the energy landscape of possible metabolite concentrations and enzymatic activities. Using metabolite, protein and...

متن کامل

Metabolic consequences of p300 gene deletion in human colon cancer cells.

Metabolite profiling using (1)H nuclear magnetic resonance (NMR) spectroscopy was used to investigate the metabolic changes associated with deletion of the gene for the transcriptional coactivator p300 in the human colon carcinoma cell line HCT116. Multivariate statistical methods were used to distinguish between metabolite patterns that were dependent on cell growth conditions and those that w...

متن کامل

Improved metabolite profile smoothing for flux estimation.

As genome-scale metabolic models become more sophisticated and dynamic, one significant challenge in using these models is to effectively integrate increasingly prevalent systems-scale metabolite profiling data into them. One common data processing step when integrating metabolite data is to smooth experimental time course measurements: the smoothed profiles can be used to estimate metabolite a...

متن کامل

Metabolic and transcriptional transitions in barley glumes reveal a role as transitory resource buffers during endosperm filling

During grain filling in barley (Hordeum vulgare L. cv. Barke) reserves are remobilized from vegetative organs. Glumes represent the vegetative tissues closest to grains, senesce late, and are involved in the conversion of assimilates. To analyse glume development and metabolism related to grain filling, parallel transcript and metabolite profiling in glumes and endosperm were performed, showing...

متن کامل

Genome-wide primary transcriptome analysis of H2-producing archaeon Thermococcus onnurineus NA1

In spite of their pivotal roles in transcriptional and post-transcriptional processes, the regulatory elements of archaeal genomes are not yet fully understood. Here, we determine the primary transcriptome of the H2-producing archaeon Thermococcus onnurineus NA1. We identified 1,082 purine-rich transcription initiation sites along with well-conserved TATA box, A-rich B recognition element (BRE)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015